Parsel Documentation
Release 1.5.2

Scrapy Project

Feb 04, 2020

Contents

1 Features
1.1 Parsel Documentation Contents

1.2 Indicesandtables

Index

Parsel Documentation, Release 1.5.2

Parsel is a library to extract data from HTML and XML using XPath and CSS selectors
* Free software: BSD license

* Documentation: https://parsel.readthedocs.org.

Contents 1

https://travis-ci.org/scrapy/parsel
https://pypi.python.org/pypi/parsel
http://codecov.io/github/scrapy/parsel?branch=master
https://parsel.readthedocs.org

Parsel Documentation, Release 1.5.2

2 Contents

CHAPTER 1

Features

 Extract text using CSS or XPath selectors
* Regular expression helper methods

Example:

>>> from parsel import Selector

>>> gsel = Selector (text=u"""<html>
<body>
<hl>Hello, Parsel!</hl>

Link 1</1li>
Link 2</1i>

</body>
</html>""")
>>>
>>> sel.css('hl::text').get ()
'Hello, Parsel!'
>>>
>>> sel.css('hl::text').re("\w+'")
['Hello', 'Parsel']
>>>
>>> for e in sel.css('ul > 1i'"):
C. print (e.xpath('.//a/@href') .get ())
http://example.com
http://scrapy.org

1.1 Parsel Documentation Contents

Contents:

Parsel Documentation, Release 1.5.2

1.1.1 Installation

To install Parsel, we recommend you to use pip:

’$ pip install parsel

You probably shouldn’t, but you can also install it with easy_install:

’$ easy_install parsel

1.1.2 Usage

Getting started

If you already know how to write CSS or XPath expressions, using Parsel is straightforward: you just need to create
a Selector object for the HTML or XML text you want to parse, and use the available methods for selecting parts
from the text and extracting data out of the result.

Creating a Selector object is simple:

>>> from parsel import Selector
>>> text = u"<html><body><hl>Hello, Parsel!</hl1></body></html>"
>>> gsel = Selector (text=text)

Note: One important thing to note is that if you’re using Python 2, make sure to use an unicode object for the text
argument. Selector expects text to be an unicode object in Python 2 or an str object in Python 3.

Once you have created the Selector object, you can use CSS or XPath expressions to select elements:

>>> sel.css('hl")

[<Selector xpath='descendant-or-self::hl' data='<hl>Hello, Parsel!</hl>"'>]
>>> sel.xpath('//hl') # the same, but now with XPath

[<Selector xpath='//hl' data='<hl>Hello, Parsel!</hl>'>]

And extract data from those elements:

>>> sel.css('hl::text') .get ()
'Hello, Parsel!'
>>> sel.xpath('//hl/text ()'") .getall ()

['Hello, Parsel!']

XPath is a language for selecting nodes in XML documents, which can also be used with HTML. CSS is a language
for applying styles to HTML documents. It defines selectors to associate those styles with specific HTML elements.

You can use either language you’re more comfortable with, though you may find that in some specific cases XPath is
more powerful than CSS.

Using selectors

To explain how to use the selectors we’ll use the requests library to download an example page located in the Parsel’s
documentation:

http://parsel.readthedocs.org/en/latest/_static/selectors-sample1.html

4 Chapter 1. Features

https://pip.pypa.io/
https://stackoverflow.com/questions/3220404/why-use-pip-over-easy-install
http://www.w3.org/TR/selectors
http://www.w3.org/TR/xpath
http://www.w3.org/TR/selectors
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/selectors
http://www.w3.org/TR/xpath
http://www.w3.org/TR/selectors
http://www.python-requests.org/
http://parsel.readthedocs.org/en/latest/_static/selectors-sample1.html

Parsel Documentation, Release 1.5.2

For the sake of completeness, here’s its full HTML code:

<html>
<head>
<base href='http://example.com/' />
<title>Example website</title>
</head>
<body>
<div id='"images'>

Name: My image 1

Name: My image 2

Name: My image 3

Name: My image 4

Name: My image 5

</div>
</body>
</html>

So, let’s download that page and create a selector for it:

>>> import requests
>>> from parsel import Selector

>>> url = 'http://parsel.readthedocs.org/en/latest/_static/selectors—samplel.html’
>>> text = requests.get (url) .text
>>> selector = Selector (text=text)

Since we’re dealing with HTML, the default type for Selector, we don’t need to specify the fype argument.

So, by looking at the HTML code of that page, let’s construct an XPath for selecting the text inside the title tag:

>>> selector.xpath('//title/text ()")
[<Selector xpath='//title/text ()' data='Example website'>]

You can also ask the same thing using CSS instead:

>>> gelector.css('title::text")
[<Selector xpath='descendant-or-self::title/text ()' data='Example website'>]

To actually extract the textual data, you must call the selector .get () or .getall () methods, as follows:

>>> selector.xpath('//title/text ()") .getall ()
["Example website']
>>> selector.xpath('//title/text () ") .get ()

'Example website'

.get () always returns a single result; if there are several matches, content of a first match is returned; if there are no
matches, None is returned. .getall () returns a list with all results.

Notice that CSS selectors can select text or attribute nodes using CSS3 pseudo-elements:

>>> selector.css('title::text') .get ()
'Example website'

Asyoucansee, .xpath () and . css () methods returna SelectorList instance, which is a list of new selectors.
This API can be used for quickly selecting nested data:

>>> selector.css('img') .xpath('Gsrc') .getall()
["imagel_thumb. jpg"',

(continues on next page)

1.1. Parsel Documentation Contents 5

Parsel Documentation, Release 1.5.2

(continued from previous page)

'image2_thumb. jpg',
'image3_thumb. jpg',
'image4_thumb. jpg',
'image5_thumb. jpg']

If you want to extract only the first matched element, you can call the selector .get () (or its alias .
extract_first () commonly used in previous parsel versions):

>>> selector.xpath('//div[@id="images"]/a/text () ") .get ()
'Name: My image 1 '

It returns None if no element was found:

>>> selector.xpath('//div[@id="not-exists"]/text ()"').get () is None
True

Instead of using e.g. ' @src' XPath it is possible to query for attributes using . attrib property of a Selector:

>>> [img.attrib['src'] for img in selector.css('img')]
["imagel_thumb. jpg"',

'image2_thumb. jpg',

'image3_thumb. jpg',

'image4_thumb. jpg',

'image5_thumb. jpg']

As a shortcut, . attrib is also available on SelectorList directly; it returns attributes for the first matching element:

>>> selector.css('img') .attrib['src']
'imagel_thumb. jpg’

This is most useful when only a single result is expected, e.g. when selecting by id, or selecting unique elements on a
web page:

>>> selector.css('base') .attrib['href']
'http://example.com/"'

Now we’re going to get the base URL and some image links:

>>> selector.xpath('//base/@href') .get ()
'http://example.com/"'

>>> selector.css('base::attr (href) ') .get ()
'http://example.com/"'

>>> gelector.css('base') .attrib['href']
'http://example.com/"'

>>> selector.xpath('//al[contains (@href, "image")]/@href') .getall ()
['"imagel.html',

'image2.html’',

'image3.html',

'image4.html',

'image5.html"']

>>> selector.css('alhrefx=image]::attr (href) ') .getall()
["imagel.html',

(continues on next page)

6 Chapter 1. Features

Parsel Documentation, Release 1.5.2

(continued from previous page)

'image2.html',
'image3.html’',
'image4.html',
'image5.html']

>>> selector.xpath('//al[contains (@href, "image")]/img/@src') .getall ()
["imagel_thumb. jpg"',

'image2_thumb. jpg',

'image3_thumb. jpg',

'image4_thumb. jpg',

'image5_thumb. jpg']

>>> gelector.css('alhrefx=image] img::attr(src)').getall ()
["imagel_thumb. jpg"',

'image2_thumb. jpg',

'image3_thumb. jpg',

'image4_thumb. jpg',

'image5_thumb. jpg']

Extensions to CSS Selectors

Per W3C standards, CSS selectors do not support selecting text nodes or attribute values. But selecting these is so
essential in a web scraping context that Parsel implements a couple of non-standard pseudo-elements:

¢ to select text nodes, use : :text

* to select attribute values, use : :attr (name) where name is the name of the attribute that you want the value
of

Warning: These pseudo-elements are Scrapy-/Parsel-specific. They will most probably not work with other
libraries like Ixml or PyQuery.

Examples:

e title: :text selects children text nodes of a descendant <t it l1e> element:

>>> selector.css('title::text') .get ()
'Example website'

e x::text selects all descendant text nodes of the current selector context:

>>> selector.css('#images *::text').getall()

['\n 'y

'Name: My image 1 ',
"\n 'y

'Name: My image 2 ',
l\n l,

'Name: My image 3 ',
"\n ',

'Name: My image 4 ',
"\n 'y

'Name: My image 5 ',
"\n ']

1.1. Parsel Documentation Contents 7

https://www.w3.org/TR/css3-selectors/#selectors
http://lxml.de/
https://pypi.python.org/pypi/pyquery

Parsel Documentation, Release 1.5.2

* a::attr (href) selects the href attribute value of descendant links:

>>> selector.css('a::attr (href) ') .getall()
['"imagel.html',

'image2.html’',

'image3.html’',

'image4.html',

'image5.html']

Note: You cannot chain these pseudo-elements. But in practice it would not make much sense: text nodes do not
have attributes, and attribute values are string values already and do not have children nodes.

Note: See also: Selecting element attributes.

Nesting selectors

The selection methods (. xpath () or . css ()) return a list of selectors of the same type, so you can call the selection
methods for those selectors too. Here’s an example:

>>> links = selector.xpath('//al[contains (@href, "image")]")
>>> links.getall ()

['Name: My image 1
",
'Name: My image 2
"',
'Name: My image 3
"',
'Name: My image 4
"',
'Name: My image 5
"]

>>> for index, link in enumerate (links) :

args = (index, link.xpath('@href').get (), link.xpath('img/@src').get())
print ('Link number $d points to url %r and image %r' % args)

Link number
Link number
Link number
Link number
Link number

points to url 'imagel.html' and image 'imagel_thumb. jpg'
points to url 'image2.html' and image 'image2_thumb. jpg’
points to url 'image3.html' and image 'image3_thumb. jpg’
points to url 'imaged4.html' and image 'image4_thumb. jpg'
points to url 'image5.html' and image 'imageS5_thumb. jpg’

S W N RO

Selecting element attributes

There are several ways to get a value of an attribute. First, one can use XPath syntax:

>>> selector.xpath("//a/@href") .getall ()
['"imagel.html', 'image2.html', 'image3.html', 'imaged4.html', 'imageS5.html']

XPath syntax has a few advantages: it is a standard XPath feature, and @attributes can be used in other parts of
an XPath expression - e.g. it is possible to filter by attribute value.

parsel also provides an extension to CSS selectors (: :attr (.. .)) which allows to get attribute values:

>>> selector.css('a::attr (href) ') .getall()
["imagel.html', 'image2.html', 'image3.html', 'imaged4.html', 'imageS5.html']

8 Chapter 1. Features

Parsel Documentation, Release 1.5.2

In addition to that, there is a . at t rib property of Selector. You can use it if you prefer to lookup attributes in Python
code, without using XPaths or CSS extensions:

>>> [a.attrib['href'] for a in selector.css('a')]
['imagel.html', 'image2.html', 'image3.html', 'imaged4.html', 'image5.html']

This property is also available on SelectorList; it returns a dictionary with attributes of a first matching element. It
is convenient to use when a selector is expected to give a single result (e.g. when selecting by element ID, or when
selecting an unique element on a page):

>>> gelector.css('base') .attrib
{'href': 'http://example.com/"'}
>>> selector.css('base') .attrib['href']

'http://example.com/"’

.attrib property of an empty SelectorList is empty:

>>> gelector.css('foo') .attrib

{1

Using selectors with regular expressions

Selector also has a .re () method for extracting data using regular expressions. However, unlike using .
xpath () or .css () methods, .re () returns a list of unicode strings. So you can’t construct nested .re ()
calls.

Here’s an example used to extract image names from the HTML code above:

>>> selector.xpath('//al[contains (@href, "image")]/text ()').re(r'Name:\s* (.*)")
['My image 1°',

'My image 2',

'My image 3',

'My image 4',

'My image 5']

There’s an additional helper reciprocating .get () (and its alias .extract_first ()) for .re (), named .
re_first (). Use it to extract just the first matching string:

>>> sgselector.xpath('//al[contains (Ghref, "image")]/text()'"').re_first (r'Name:\s* (.x)")
'My image 1'

Working with relative XPaths

Keep in mind that if you are nesting selectors and use an XPath that starts with /, that XPath will be absolute to the
document and not relative to the selector you’re calling it from.

For example, suppose you want to extract all <p> elements inside <div> elements. First, you would get all <div>
elements:

>>> divs = selector.xpath('//div")

At first, you may be tempted to use the following approach, which is wrong, as it actually extracts all <p> elements
from the document, not only those inside <div> elements:

1.1. Parsel Documentation Contents 9

Parsel Documentation, Release 1.5.2

>>> for p in divs.xpath('//p'): # this is wrong — gets all <p> from the whole,
—document
print (p.get ())

This is the proper way to do it (note the dot prefixing the . / /p XPath):

>>> for p in divs.xpath('.//p'): # extracts all <p> inside
print (p.get ())

Another common case would be to extract all direct <p> children:

>>> for p in divs.xpath('p'):
print (p.get ())

For more details about relative XPaths see the Location Paths section in the XPath specification.

Using EXSLT extensions

Being built atop Ixml, parsel selectors support some EXSLT extensions and come with these pre-registered namespaces
to use in XPath expressions:

prefix | namespace usage
re http://exslt.org/regular-expressions | regular expressions
set http://exslt.org/sets set manipulation

Regular expressions

The test () function, for example, can prove quite useful when XPath’s starts-with () or contains () are
not sufficient.

Example selecting links in list item with a “class” attribute ending with a digit:

>>> from parsel import Selector
>>> doc = u"""
<div>

<li class="item-0">first item
<li class="item-1">second item</1li>
<li class="item-inactive">third item</1li>
<li class="item-1">fourth item</1li>
<li class="item-0">fifth item

</div>
>>> gsel = Selector (text=doc)
>>> sel.xpath('//1i//@href') .getall ()
['"linkl.html', '"link2.html', 'link3.html', 'link4.html', 'link5.html"']
>>> sel.xpath('//li[re:test (€class, "item-\d$")]//@href') .getall ()
['"linkl.html', '"link2.html', 'link4.html', 'link5.html"']
>>>

10 Chapter 1. Features

https://www.w3.org/TR/xpath#location-paths
http://lxml.de/
http://exslt.org/
http://exslt.org/regexp/index.html
http://exslt.org/set/index.html

Parsel Documentation, Release 1.5.2

Warning: C library 1ibxs1t doesn’t natively support EXSLT regular expressions so Ixml’s implementation
uses hooks to Python’s re module. Thus, using regexp functions in your XPath expressions may add a small
performance penalty.

Set operations

These can be handy for excluding parts of a document tree before extracting text elements for example.

Example extracting microdata (sample content taken from http://schema.org/Product) with groups of itemscopes and
corresponding itemprops:

>>> doc = u"""
<div itemscope itemtype="http://schema.org/Product">
Kenmore White 17" Microwave

<div itemprop="aggregateRating"
itemscope itemtype="http://schema.org/AggregateRating">
Rated 3.5/5
based on 11 customer reviews
</div>

<div itemprop="offers" itemscope itemtype="http://schema.org/Offer">

$55.00

<link itemprop="availability" href="http://schema.org/InStock" />In stock
</div>

Product description:

0.7 cubic feet countertop microwave.
Has six preset cooking categories and convenience features like
Add-A-Minute and Child Lock.

Customer reviews:

<div itemprop="review" itemscope itemtype="http://schema.org/Review">
Not a happy camper -
by Ellie,
<meta itemprop="datePublished" content="2011-04-01">April 1, 2011
<div itemprop="reviewRating" itemscope itemtype="http://schema.org/Rating">
<meta itemprop="worstRating" content = "1">
1/
5stars
</div>
The lamp burned out and now I have to replace
it.
</div>

<div itemprop="review" itemscope itemtype="http://schema.org/Review">

Value purchase -

by Lucas,

<meta itemprop="datePublished" content="2011-03-25">March 25, 2011

<div itemprop="reviewRating" itemscope itemtype="http://schema.org/Rating">
<meta itemprop="worstRating" content = "1"/>
4/
5stars

</div>

(continues on next page)

1.1. Parsel Documentation Contents 11

http://lxml.de/
http://schema.org/Product

Parsel Documentation, Release 1.5.2

(continued from previous page)

Great microwave for the price. It is small and
fits in my apartment.
</div>
</div>
“ o e wwn
>>> sel = Selector (text=doc, type="html")
>>> for scope in sel.xpath('//div[Q@itemscope]'):
print ("current scope:", scope.xpath('@itemtype').getall())
props = scope.xpath('"'
set:difference (./descendant::*/Q@itemprop,

.//*[Qitemscope]/*/Q@itemprop) ''")
print (" properties: 2s" % (props.getall()))
print (nwn)
current scope: ['http://schema.org/Product']
properties: ['name', 'aggregateRating', 'offers', 'description', 'review', 'review
"]
current scope: ['http://schema.org/AggregateRating']
properties: ['ratingValue', 'reviewCount']
current scope: ['http://schema.org/Offer']
properties: ['price', 'availability']
current scope: ['http://schema.org/Review']
properties: ['name', 'author', 'datePublished', 'reviewRating', 'description']
current scope: ['http://schema.org/Rating']
properties: ['worstRating', 'ratingValue', 'bestRating']
current scope: ['http://schema.org/Review']
properties: ['name', 'author', 'datePublished', 'reviewRating', 'description']
current scope: ['http://schema.org/Rating']
properties: ['worstRating', 'ratingValue', 'bestRating']
>>>

Here we first iterate over it emscope elements, and for each one, we look for all itemprops elements and exclude
those that are themselves inside another itemscope.

Other XPath extensions

Parsel also defines a sorely missed XPath extension function has—-class that returns True for nodes that have all
of the specified HTML classes:

>>> from parsel import Selector

>>> gsel = Selector ("""
<p class="foo bar-baz">First</p>
<p class="foo">Second</p>
<p class="bar">Third</p>
<p>Fourth</p>

wn ")

(continues on next page)

12 Chapter 1. Features

Parsel Documentation, Release 1.5.2

(continued from previous page)

>>> gsel = Selector(u"""
<p class="foo bar-baz">First</p>
<p class="foo">Second</p>
<p class="bar">Third</p>
<p>Fourth</p>

wn ll)

>>> sel.xpath('//plhas-class ("foo")]"

)
[<Selector xpath='//pl[has-class ("foo")

]'" data="'<p class="foo bar-baz">First</p>'>,

<Selector xpath='//plhas—-class("foo")]' data='<p class="foo">Second</p>"'>]
>>> sel.xpath('//plhas-class ("foo", "bar-baz")]")

[<Selector xpath='//pl[has-class("foo", "bar-baz")]' data='<p class="foo bar-baz">First
—</p>"'>]

>>> sel.xpath('//plhas-class ("foo", "bar")]')

[]

So XPath //p[has—-class ("foo", "bar-baz")] is roughly equivalent to CSS p.foo.bar-baz. Please
note, that it is slower in most of the cases, because it’s a pure-Python function that’s invoked for every node in
question whereas the CSS lookup is translated into XPath and thus runs more efficiently, so performance-wise its uses
are limited to situations that are not easily described with CSS selectors.

Parsel also simplifies adding your own XPath extensions.

parsel.xpathfuncs.set_xpathfunc (fhame, func)
Register a custom extension function to use in XPath expressions.

The function func registered under fname identifier will be called for every matching node, being passed a
context parameter as well as any parameters passed from the corresponding XPath expression.

If func is None, the extension function will be removed.

See more in Ixml documentation.

Some XPath tips

Here are some tips that you may find useful when using XPath with Parsel, based on this post from ScrapingHub’s
blog. If you are not much familiar with XPath yet, you may want to take a look first at this XPath tutorial.

Using text nodes in a condition

When you need to use the text content as argument to an XPath string function, avoid using . //text () and use just
. instead.

This is because the expression .//text () yields a collection of text elements — a node-set. And when a node-
set is converted to a string, which happens when it is passed as argument to a string function like contains () or
starts-with (), it results in the text for the first element only.

Example:

>>> from parsel import Selector
>>> sel = Selector(text='Click here to go to the Next Page</
—strong>")

Converting a node-set to string:

1.1. Parsel Documentation Contents 13

http://lxml.de/extensions.html#xpath-extension-functions
https://blog.scrapinghub.com/2014/07/17/xpath-tips-from-the-web-scraping-trenches/
https://blog.scrapinghub.com/2014/07/17/xpath-tips-from-the-web-scraping-trenches/
http://www.zvon.org/comp/r/tut-XPath_1.html
https://www.w3.org/TR/xpath/#section-String-Functions

Parsel Documentation, Release 1.5.2

>>> sel.xpath('//a//text ()') .getall() # take a peek at the node-set
['"Click here to go to the ', 'Next Page']
>>> sel.xpath ("string(//al[l]//text ())").getall() # convert it to string

['Click here to go to the ']

A node converted to a string, however, puts together the text of itself plus of all its descendants:

>>> sel.xpath("//a[l]").getall() # select the first node

['Click here to go to the Next Page']
>>> sel.xpath("string(//al[l])").getall() # convert it to string
['Click here to go to the Next Page']

So, using the . //text () node-set won’t select anything in this case:

>>> sel.xpath("//al[contains (.//text (), 'Next Page')]").getall()
[]

But using the . to mean the node, works:

>>> sel.xpath("//alcontains (., 'Next Page')]").getall()
['Click here to go to the Next Page']

Beware of the difference between //node[1] and (//node)[1]

//node [1] selects all the nodes occurring first under their respective parents.
(//node) [11] selects all the nodes in the document, and then gets only the first of them.

Example:

>>> from parsel import Selector
>>> gsel = Selector (text="""
e <ul class="1list">
R 1</1i>

et 2</1li>

e <1i>3</1i>

e

et <ul class="1list">
e 4</1i>

ceeat <1i>5</1i>

et 6</1li>

e """)

>>> xp = lambda x: sel.xpath(x).getall()

This gets all first <11i> elements under whatever it is its parent:

>>> xp("//1i[1]1")
["<1i>1</1i>", '<1li>4</1li>"]

And this gets the first <1 1> element in the whole document:

>>> xp (" (//11) [11")
['<1i>1</1i>"]

This gets all first <11i> elements under an parent:

14 Chapter 1. Features

Parsel Documentation, Release 1.5.2

>>> xp("//ul/1i[1]1")
["<1i>1</1i>", '<1i>4</1i>"]

And this gets the first <11i> element under an parent in the whole document:

>>> xp (" (//ul/1i) [1]1™)
['<1i>1</1i>"]

When querying by class, consider using CSS

Because an element can contain multiple CSS classes, the XPath way to select elements by class is the rather verbose:

* [contains (concat (' ', normalize-space(@Qeclass), ' '), ' someclass '")]

If you use @class="someclass' you may end up missing elements that have other classes, and if you just use
contains (@class, 'someclass') to make up for that you may end up with more elements that you want, if
they have a different class name that shares the string someclass.

As it turns out, parsel selectors allow you to chain selectors, so most of the time you can just select by class using CSS
and then switch to XPath when needed:

>>> from parsel import Selector

>>> sel = Selector (text='<div class="hero shout"><time datetime="2014-07-23 19:00">
—Special date</time></div>")

>>> sel.css('.shout').xpath('./time/C@datetime’) .getall ()

['2014-07-23 19:00"]

This is cleaner than using the verbose XPath trick shown above. Just remember to use the . in the XPath expressions
that will follow.

extract() and extract_first()

If you’re a long-time parsel (or Scrapy) user, you’re probably familiar with .extract () and .extract_first ()
selector methods. These methods are still supported by parsel, there are no plans to deprecate them.

However, parsel usage docs are now written using .get () and .getall () methods. We feel that these new
methods result in more concise and readable code.

The following examples show how these methods map to each other.

1. SelectorList.get () isthe same as SelectorList.extract_first ():

>>> selector.css('a::attr (href) ') .get ()
'imagel.html'
>>> gselector.css('a::attr (href) ') .extract_first ()

'imagel.html'

2. SelectorList.getall () isthe same as SelectorList.extract ():

>>> selector.css('a::attr (href) ') .getall()
["imagel.html', 'image2.html', 'image3.html', 'imaged4.html', 'imageb.html']
>>> gelector.css('a::attr (href) ') .extract ()

['"imagel.html', 'image2.html', 'image3.html', 'imaged4.html', 'imageb5.html']

3. Selector.get () isthe same as Selector.extract ():

1.1. Parsel Documentation Contents 15

Parsel Documentation, Release 1.5.2

>>> selector.css('a::attr (href) ') [0].get ()
'imagel.html'
>>> selector.css('a::attr (href) ') [0].extract ()

'imagel.html'

4. For consistency, there is also Selector.getall (), which returns a list:

>>> selector.css('a::attr (href) ') [0].getall()
["imagel.html']

With the .extract () method it was not always obvious if a result is a list or not; to get a single result ei-
ther .extract () or .extract_first () needed to be called, depending whether you had a Selector or
SelectorList.

So, the main difference is that the outputs of . get () and .getall () are more predictable: .get () always returns
a single result, .getall () always returns a list of all extracted results.

API reference

Selector objects

class parsel.selector.Selector (text=None, type=None, namespaces=None, root=None,

base_url=None, _expr=None)
Selector allows you to select parts of an XML or HTML text using CSS or XPath expressions and extract
data from it.

text is a unicode object in Python 2 or a st r object in Python 3

type defines the selector type, it can be "html", "xm1" or None (default). If type is None, the selector
defaults to "html".

attrib
Return the attributes dictionary for underlying element.

css (query)
Apply the given CSS selector and return a SelectorList instance.

query is a string containing the CSS selector to apply.

In the background, CSS queries are translated into XPath queries using cssselect library and run .
xpath () method.

extract ()
Serialize and return the matched nodes in a single unicode string. Percent encoded content is unquoted.

get ()
Serialize and return the matched nodes in a single unicode string. Percent encoded content is unquoted.

getall ()
Serialize and return the matched node in a 1-element list of unicode strings.

re (regex, replace_entities=True)
Apply the given regex and return a list of unicode strings with the matches.

regex can be either a compiled regular expression or a string which will be compiled to a regular expres-
sion using re.compile (regex).

By default, character entity references are replaced by their corresponding character (except for samp;
and &1t ;). Passing replace_entities as False switches off these replacements.

16 Chapter 1. Features

https://pypi.python.org/pypi/cssselect/

Parsel Documentation, Release 1.5.2

re_first (regex, default=None, replace_entities=True)
Apply the given regex and return the first unicode string which matches. If there is no match, return the
default value (None if the argument is not provided).

By default, character entity references are replaced by their corresponding character (except for samp;
and &1t ;). Passing replace_entities as False switches off these replacements.

register_ namespace (prefix, uri)
Register the given namespace to be used in this Selector. Without registering namespaces you can’t
select or extract data from non-standard namespaces. See Working on XML (and namespaces).

remove_namespaces ()
Remove all namespaces, allowing to traverse the document using namespace-less xpaths. See Removing
namespaces.

selectorlist_cls
alias of SelectorList

xpath (query, namespaces=None, **kwargs)
Find nodes matching the xpath query and return the result as a SelectorList instance with all ele-
ments flattened. List elements implement Se Iector interface too.

query is a string containing the XPATH query to apply.

namespaces is an optional prefix: namespace-uri mapping (dict) for additional
prefixes to those registered with register_namespace (prefix, uri). Contrary to
register_namespace (), these prefixes are not saved for future calls.

Any additional named arguments can be used to pass values for XPath variables in the XPath expression,
e.g.

selector.xpath('//alhref=Surl]', url="http://www.example.com")

SelectorList objects

class parsel.selector.SelectorlList

The SelectorList class is a subclass of the builtin 1ist class, which provides a few additional methods.

attrib
Return the attributes dictionary for the first element. If the list is empty, return an empty dict.

css (query)
Call the .css () method for each element in this list and return their results flattened as another
SelectorList.

query is the same argument as the one in Selector.css ()

extract ()
Call the . get () method for each element is this list and return their results flattened, as a list of unicode
strings.

extract_first (default=None)
Return the result of . get () for the first element in this list. If the list is empty, return the default value.

get (default=None)
Return the result of . get () for the first element in this list. If the list is empty, return the default value.

getall ()
Call the . get () method for each element is this list and return their results flattened, as a list of unicode
strings.

1.1.

Parsel Documentation Contents 17

Parsel Documentation, Release 1.5.2

re (regex, replace_entities=True)
Call the . re () method for each element in this list and return their results flattened, as a list of unicode
strings.

By default, character entity references are replaced by their corresponding character (except for samp;
and &1t ;. Passing replace_entities as False switches off these replacements.

re_first (regex, default=None, replace_entities=True)
Call the . re () method for the first element in this list and return the result in an unicode string. If the
list is empty or the regex doesn’t match anything, return the default value (None if the argument is not
provided).

By default, character entity references are replaced by their corresponding character (except for samp;
and &1t ;. Passing replace_entities as False switches off these replacements.

xpath (xpath, namespaces=None, **kwargs)
Call the .xpath () method for each element in this list and return their results flattened as another
SelectorList.

query is the same argument as the one in Selector.xpath ()

namespaces 1is an optional prefix: namespace-uri mapping (dict) for additional
prefixes to those registered with register_namespace (prefix, uri). Contrary to
register_namespace (), these prefixes are not saved for future calls.

Any additional named arguments can be used to pass values for XPath variables in the XPath expression,
e.g.

selector.xpath('//alhref=$url]', url="http://www.example.com")

Working on HTML

Here are some Selector examples to illustrate several concepts. In all cases, we assume there is already a
Selector instantiated with an HTML text like this:

sel = Selector (text=html_text)

1. Select all <h1> elements from an HTML text, returning a list of Selector objects (ie. a SelectorList
object):

sel.xpath("//hl™)

2. Extract the text of all <h1> elements from an HTML text, returning a list of unicode strings:

sel.xpath("//hl") .getall () # this includes the hl tag
sel.xpath ("//hl/text ()").getall () # this excludes the hl tag

3. Tterate over all <p> tags and print their class attribute:

for node in sel.xpath("//p"):
print (node.attrib['class'])

Working on XML (and namespaces)

Here are some examples to illustrate concepts for Selector objects instantiated with an XML text like this:

18 Chapter 1. Features

Parsel Documentation, Release 1.5.2

sel = Selector (text=xml_text, type='xml'")

1. Select all <product> elements from an XML text, returning a list of Selector objects (ie. a
SelectorList object):

’sel.xpath("//product")

2. Extract all prices from a Google Base XML feed which requires registering a namespace:

sel.register_namespace ("g", "http://base.google.com/ns/1.0")
sel.xpath ("//g:price") .getall ()

Removing namespaces

When dealing with scraping projects, it is often quite convenient to get rid of namespaces altogether and just work with
element names, to write more simple/convenient XPaths. You can use the Selector.remove_namespaces ()
method for that.

Let’s show an example that illustrates this with the Python Insider blog atom feed.

Let’s download the atom feed using requests and create a selector:

>>> import requests

>>> from parsel import Selector

>>> text = requests.get ('https://feeds.feedburner.com/PythonInsider') .text
>>> sel = Selector (text=text, type='xml'")

This is how the file starts:

<?xml version="1.0" encoding="UTF-8"7?>

<?xml-stylesheet

<feed xmlns="http://www.w3.0rg/2005/Atom"
xmlns:openSearch="http://a9.com/-/spec/opensearchrss/1.0/"
xmlns:blogger="http://schemas.google.com/blogger/2008"
xmlns:georss="http://www.georss.org/georss"
xmlns:gd="http://schemas.google.com/g/2005"
xmlns:thr="http://purl.org/syndication/thread/1.0"
xmlns: feedburner="http://rssnamespace.org/feedburner/ext/1.0">

You can see several namespace declarations including a default “http://www.w3.0rg/2005/Atom” and another one
using the “gd:” prefix for “http://schemas.google.com/g/2005”.

We can try selecting all <1ink> objects and then see that it doesn’t work (because the Atom XML namespace is
obfuscating those nodes):

>>> sel.xpath("//1link™)
[]

But once we call the Selector.remove_namespaces () method, all nodes can be accessed directly by their
names:

>>> sel.remove_namespaces ()
>>> sel.xpath("//1link™")
[<Selector xpath='//link' data='<link rel="alternate" type="text/html" h'>,

(continues on next page)

1.1. Parsel Documentation Contents 19

https://support.google.com/merchants/answer/160589?hl=en&ref_topic=2473799
http://www.python-requests.org/
http://www.w3.org/2005/Atom
http://schemas.google.com/g/2005

Parsel Documentation, Release 1.5.2

(continued from previous page)

<Selector xpath='//link' data='<link rel="next" type="application/atom+'>,

If you wonder why the namespace removal procedure isn’t called always by default instead of having to call it manu-
ally, this is because of two reasons, which, in order of relevance, are:

1. Removing namespaces requires to iterate and modify all nodes in the document, which is a reasonably expensive
operation to perform by default for all documents.

2. There could be some cases where using namespaces is actually required, in case some element names clash
between namespaces. These cases are very rare though.

Ad-hoc nhamespaces references

Selector objects also allow passing namespaces references along with the query, through a namespaces argu-
ment, with the prefixes you declare being used in your XPath or CSS query.

Let’s use the same Python Insider Atom feed:

>>> import requests

>>> from parsel import Selector

>>> text = requests.get ('https://feeds.feedburner.com/PythonInsider') .text
>>> sel = Selector (text=text, type='xml'")

And try to select the links again, now using an “atom:” prefix for the “link” node test:

>>> sel.xpath("//atom:1ink", namespaces={"atom": "http://www.w3.0rg/2005/Atom"})
[<Selector xpath='//atom:link' data='<link xmlns="http://www.w3.0rg/2005/Atom'>,
<Selector xpath='//atom:1link' data='<link xmlns="http://www.w3.0rg/2005/Atom"'>,

You can pass several namespaces (here we’re using shorter 1-letter prefixes):

>>> sel.xpath("//a:entry/a:author/g:image/@src",
namespaces={"a": "http://www.w3.0rg/2005/Atom",
. "g": "http://schemas.google.com/g/2005"}) .getall ()
['http //photosl.blogger.com/blogger/4554/1119/400/beethoven_10. jpg"',
'//1h3.googleusercontent.com/-7xisiK0EArc/AAAAAAAAAAT /AAAAAAAAAUM/-r606A8RKCM/s512-c/
—photo. jpg',

Variables in XPath expressions

XPath allows you to reference variables in your XPath expressions, using the $somevariable syntax. This is some-
what similar to parameterized queries or prepared statements in the SQL world where you replace some arguments in
your queries with placeholders like ?, which are then substituted with values passed with the query.

Here’s an example to match an element based on its normalized string-value:

>>> str_to_match = "Name: My image 3"
>>> selector.xpath('//al[normalize-space (.)=Smatch]"'
match=str_to match).get()
'Name: My image 3
"

20 Chapter 1. Features

Parsel Documentation, Release 1.5.2

All variable references must have a binding value when calling . xpath () (otherwise you’ll get a ValueError:
XPath error: exception). This is done by passing as many named arguments as necessary.

Here’s another example using a position range passed as two integers:

>>> start, stop = 2, 4

>>> selector.xpath('//al[position()>=$_from and position()<=$_to]"',

e _from=start, _to=stop).getall()

['Name: My image 2
",
'Name: My image 3
"',
'Name: My image 4
"']

Named variables can be useful when strings need to be escaped for single or double quotes characters. The example
below would be a bit tricky to get right (or legible) without a variable reference:

>>> html = u'''<html>

<body>

<p>He said: "I don't know why, but I like mixing single and double quotes!"</p>

</body>

</html>""'"
>>> selector = Selector (text=html)
>>>
>>> selector.xpath('//plcontains (., Smystring)]"',

mystring='"'"He said: "I don't know''').get ()

'<p>He said: "I don\'t know why, but I like mixing single and double quotes!"</p>'

Converting CSS to XPath

parsel.css2xpath (query)
Return translated XPath version of a given CSS query

When you’re using an API that only accepts XPath expressions, it’s sometimes useful to convert CSS to XPath. This
allows you to take advantage of the conciseness of CSS to query elements by classes and the easeness of manipulating
XPath expressions at the same time.

On those occasions, use the function cssZ2xpath ():

>>> from parsel import css2xpath
>>> css2xpath('hl.title")

"descendant-or-self::hl[@class and contains (concat (' ', normalize-space(@class), ' '),
— ' title '")]"

>>> css2xpath ('.profile-data') + '//h2'

"descendant-or-self::x[@class and contains(concat (' ', normalize-space(@class), ' "),
' profile-data ')]//h2"

As you can see from the examples above, it returns the translated CSS query into an XPath expression as a string,
which you can use as-is or combine to build a more complex expression, before feeding to a function expecting XPath.

Similar libraries
» BeautifulSoup is a very popular screen scraping library among Python programmers which constructs a Python
object based on the structure of the HTML code and also deals with bad markup reasonably well.

e Ixml is an XML parsing library (which also parses HTML) with a pythonic API based on ElementTree. (Ixml is
not part of the Python standard library.). Parsel uses it under-the-hood.

1.1. Parsel Documentation Contents 21

http://www.crummy.com/software/BeautifulSoup/
http://lxml.de/
https://docs.python.org/2/library/xml.etree.elementtree.html

Parsel Documentation, Release 1.5.2

e PyQuery is a library that, like Parsel, uses Ixml and cssselect under the hood, but it offers a jQuery-like API to
traverse and manipulate XML/HTML documents.

Parsel is built on top of the Ixml library, which means they’re very similar in speed and parsing accuracy. The advantage
of using Parsel over Ixml is that Parsel is simpler to use and extend, unlike the Ixml API which is much bigger because
the Ixml library can be used for many other tasks, besides selecting markup documents.

1.1.3 History

1.5.2 (2019-08-09)

* Selector.remove_namespaces received a significant performance improvement

* The value of data within the printable representation of a selector (repr (selector)) now ends in . . .
when truncated, to make the truncation obvious.

¢ Minor documentation improvements.

1.5.1 (2018-10-25)

* has-class XPath function handles newlines and other separators in class names properly;
* fixed parsing of HTML documents with null bytes;

* documentation improvements;

Python 3.7 tests are run on CI; other test improvements.

1.5.0 (2018-07-04)

* New Selector.attriband SelectorList.attrib properties which make it easier to get attributes of
HTML elements.

* CSS selectors became faster: compilation results are cached (LRU cache is used for css2xpath), so there is
less overhead when the same CSS expression is used several times.

e .get () and .getall () selector methods are documented and recommended over .extract_first ()
and .extract ().

* Various documentation tweaks and improvements.

One more change is that .extract () and .extract_first () methods are now implemented using . get ()
and .getall (), not the other way around, and instead of calling Selector.extract all other methods now call
Selector.get internally. It can be backwards incompatible in case of custom Selector subclasses which override
Selector.extract without doing the same for Selector.get. If you have such Selector subclass, make sure
get method is also overridden. For example, this:

class MySelector (parsel.Selector):
def extract (self):
return super () .extract() + " foo"

should be changed to this:

class MySelector (parsel.Selector):
def get (self):
return super () .get() + " foo"
extract = get

22 Chapter 1. Features

https://pypi.python.org/pypi/pyquery
http://lxml.de/
https://pypi.python.org/pypi/cssselect/
http://lxml.de/
http://lxml.de/
http://lxml.de/
http://lxml.de/

Parsel Documentation, Release 1.5.2

1.4.0 (2018-02-08)

* Selector and SelectorList can’t be pickled because pickling/unpickling doesn’t work for 1xml.
html.HtmlElement; parsel now raises TypeError explicitly instead of allowing pickle to silently produce
wrong output. This is technically backwards-incompatible if you’re using Python < 3.6.

1.3.1 (2017-12-28)

* Fix artifact uploads to pypi.

1.3.0 (2017-12-28)

¢ has—class XPath extension function;

* parsel.xpathfuncs.set_xpathfunc is a simplified way to register XPath extensions;
* Selector.remove_namespaces NOW removes namespace declarations;

* Python 3.3 support is dropped;

* make htmlview command for easier Parsel docs development.

 CI: PyPy installation is fixed; parsel now runs tests for PyPy3 as well.

1.2.0 (2017-05-17)
e Add SelectorList.get and SelectorList.getall methods as aliases for SelectorList.
extract_first and SelectorList.extract respectively
¢ Add default value parameter to SelectorList.re_first method
e Add Selector.re_first method

* Add replace_entities argumenton .re () and .re_first () to turn off replacing of character entity
references

* Bug fix: detect None result from Ixml parsing and fallback with an empty document
* Rearrange XML/HTML examples in the selectors usage docs
* Travis CI:

— Test against Python 3.6

— Test against PyPy using “Portable PyPy for Linux” distribution

1.1.0 (2016-11-22)
* Change default HTML parser to Ixml.html.HTMLParser, which makes easier to use some HTML specific fea-
tures
* Add css2xpath function to translate CSS to XPath
* Add support for ad-hoc namespaces declarations
* Add support for XPath variables

* Documentation improvements and updates

1.1. Parsel Documentation Contents 23

http://lxml.de/api/lxml.html.HTMLParser-class.html

Parsel Documentation, Release 1.5.2

1.0.3 (2016-07-29)

Add BSD-3-Clause license file
* Re-enable PyPy tests
* Integrate py.test runs with setuptools (needed for Debian packaging)

* Changelog is now called NEWS

1.0.2 (2016-04-26)

* Fix bug in exception handling causing original traceback to be lost

* Added docstrings and other doc fixes

1.0.1 (2015-08-24)

» Updated PyPI classifiers

* Added docstrings for csstranslator module and other doc fixes

1.0.0 (2015-08-22)

¢ Documentation fixes

0.9.6 (2015-08-14)

» Updated documentation

» Extended test coverage

0.9.5 (2015-08-11)

* Support for extending SelectorList

0.9.4 (2015-08-10)

* Try workaround for travis-ci/dpl#253

0.9.3 (2015-08-07)

* Add base_url argument

0.9.2 (2015-08-07)

¢ Rename module unified -> selector and promoted root attribute

¢ Add create_root_node function

24

Chapter 1. Features

Parsel Documentation, Release 1.5.2

0.9.1 (2015-08-04)

* Setup Sphinx build and docs structure
¢ Build universal wheels

* Rename some leftovers from package extraction

0.9.0 (2015-07-30)

¢ First release on PyPL

1.2 Indices and tables

¢ genindex
* modindex

e search

1.2. Indices and tables 25

Parsel Documentation, Release 1.5.2

26

Chapter 1. Features

Index

A X

attrib (parsel.selector.Selector attribute), 16 xpath () (parsel.selector.Selector method), 17
attrib (parsel.selector.SelectorList attribute), 17 xpath () (parsel.selector.SelectorList method), 18

C

css () (parsel.selector.Selector method), 16
css () (parsel.selector.SelectorList method), 17
css2xpath () (in module parsel), 21

E

extract () (parsel.selector.Selector method), 16

extract () (parsel.selector.SelectorList method), 17

extract_first () (parsel.selector.SelectorList
method), 17

G

get () (parsel.selector.Selector method), 16

get () (parsel.selector.SelectorList method), 17
getall () (parsel.selector.Selector method), 16
getall () (parsel.selector.SelectorList method), 17

R

re () (parsel.selector.Selector method), 16

re () (parsel.selector.SelectorList method), 17

re_first () (parsel.selector.Selector method), 16

re_first () (parsel.selector.SelectorList method), 18

register_namespace () (parsel.selector.Selector
method), 17

remove_namespaces () (parsel.selector.Selector
method), 17

S

Selector (class in parsel.selector), 16

SelectorList (class in parsel.selector), 17

selectorlist_cls (parselselector.Selector at-
tribute), 17

set_xpathfunc () (in module parsel.xpathfuncs), 13

27

	Features
	Parsel Documentation Contents
	Indices and tables

	Index

